My experience is the same. In short, agents cannot plan ahead, or plan at a high level. This means they have a blindspot for design. Since they cannot design properly, it limits the kind of projects that are viable to smaller scopes (not sure exactly how small but in my experience, extremely small and simple). Anything that exceeds this abstract threshold has a good chance of being a net negative, with most of the code being unmantainable, unextensible, and unreliable.
Anyone who claims AI is great is not building a large or complex enough app, and when it works for their small project, they extrapolate to all possibilities. So because their example was generated from a prompt, it's incorrectly assumed that any prompt will also work. That doesn't necessarily follow.
The reality is that programming is widely underestimated. The perception is that it's just syntax on a text file, but it's really more like a giant abstract machine with moving parts. If you don't see the giant machine with moving parts, chances are you are not going to build good software. For AI to do this, it would require strong reasoning capabilities, that lets it derive logical structures, along with long term planning and simulation of this abstract machine. I predict that if AI can do this then it will be able to do every single other job, including physical jobs as it would be able to reason within a robotic body in the physical world.
To summarize, people are underestimating programming, using their simple projects to incorrectly extrapolate to any possible prompt, and missing the hard part of programming which involves building abstract machines that work on first principles and mathematical logic.
> Anyone who claims AI is great is not building a large or complex enough app
That might be true for agentic coding (caveat below), but AI in the hands of expert users can be very useful - "great" - in building large and complex apps. It's just that it has to be guided and reviewed by the human expert.
As for agentic coding, it may depend on the app. For example, Steve Yegge's "beads" system is over a quarter million lines of allegedly vibe-coded Go code. But developing a CLI like that may be a sweet spot for LLMs, it doesn't have all the messiness of typical business system requirements.
>Anyone who claims AI is great is not building a large or complex enough app
I can't speak for everyone, but lots of us fully understand that the AI tooling has limitations and realize there's a LOT of work that can be done within those limitations. Also, those limitations are expanding, so it's good to experiment to find out where they are.
Conversely, it seems like a lot of people are saying that AI is worthless because it can't build arbitrarily large apps.
I've recently used the AI tooling to make a docusign-like service and it did a fairly good job of it, requiring about a days worth of my attention. That's not an amazingly complex app, but it's not nothing either. Ditto for a calorie tracking web app. Not the most complex app, but companies are making legit money off them, if you want a tangible measure of "worth".