One point in favor of smaller/self-hosted LLMs: more consistent performance, and you control your upgrade cadence, not the model providers.
I'd push everyone to self-host models (even if it's on a shared compute arrangement), as no enterprise I've worked with is prepared for the churn of keeping up with the hosted model release/deprecation cadence.
How much you value control is one part of the optimization problem. Obviously self hosting gives you more but it costs more, and re evals, I trust GPT, Gemini, and Claude a lot more than some smaller thing I self host, and would end up wanting to do way more evals if I self hosted a smaller model.
(Potentially interesting aside: I’d say I trust new GLM models similarly to the big 3, but they’re too big for most people to self host)
Where can I find information on self-hosting models success stories? All of it seems like throwing tens of thousands away on compute for it to work worse than the standard providers. The self-hosted models seem to get out of date, too. Or there ends up being good reasons (improved performance) to replace them