logoalt Hacker News

mannykannottoday at 3:36 AM0 repliesview on HN

You might find these points helpful:

1) when an airliner lands, the undercarriage legs, which are telescopic sprung and damped struts, spread the vertical deceleration over a finite period (I cannot say how long it lasts, but I would say of the order of a second or so.)

2) At the point of touchdown, the wings are generating lift about equal to the aircraft’s weight. This decreases quite rapidly, largely on account of the decease in angle of attack as the nosewheel comes down and from the deployment of spoilers, but it would be mistaken to think that the runway is immediately supporting the full weight of the airliner after touchdown.

3) On takeoff, until the nosewheel is lifted to initiate rotation, a significant fraction of an airliner’s weight is being supported by the runway. During rotation, as the angle of attack increases, the lift increases [1] until it exceeds the weight, at which point the airliner lifts off.

4) If we ignore the fact that the undercarriage is sprung, then the airliner has no vertical velocity until it lifts off. Right at that point, however, when the lift exceeds the weight, it gains a vertical acceleration.

I hope this helps!

[1] Plus a vertical component of the engine thrust, but no airliner rotates to anything like 45 degrees - in fact, if it has not left the ground at a rotation angle equal to the angle of maximum lift coefficient (~10 - 15 degrees), it is not going to do so without going faster.