>The goal is, that xfwl4 will offer the same functionality and behavior as xfwm4 does...
I wonder how strictly they interpret behavior here given the architectural divergence?
As an example, focus-stealing prevention. In xfwm4 (and x11 generally), this requires complex heuristics and timestamp checks because x11 clients are powerful and can aggressively grab focus. In wayland, the compositor is the sole arbiter of focus, hence clients can't steal it, they can only request it via xdg-activation. Porting the legacy x11 logic involves the challenge of actually designing a new policy that feels like the old heuristic but operates on wayland's strict authority model.
This leads to my main curiosity regarding the raw responsiveness of xfce. On potato hardware, xfwm4 often feels snappy because it can run as a distinct stacking window manager with the compositor disabled. Wayland, by definition forces compositing. While I am not concerned about rust vs C latency (since smithay compiles to machine code without a GC), I am curious about the mandatory compositing overhead. Can the compositor replicate the input-to-pixel latency of uncomposited x11 on low-end devices or is that a class of performance we just have to sacrifice for the frame-perfect rendering of wayland?
Compositor overhead even with cheapo Intel laptop graphics is basically a non-issue these days. The people still rocking their 20 year old thinkpads might want to choose something else, but besides that kind of user I don't think it's worth worrying too much about.
One thing to keep in mind is that composition does not mean you have to do it with vsync, you can just refresh the screen the moment a client tells you the window has new contents.
> Can the compositor replicate the input-to-pixel latency of uncomposited x11 on low-end devices or is that a class of performance we just have to sacrifice for the frame-perfect rendering of wayland?
I think this is ultimately correct. The compositor will have to render a frame at some point after the VBlank signal, and it will need to render with it the buffers on-screen as of that point, which will be from whatever was last rendered to them.
This can be somewhat alleviated, though. Both KDE and GNOME have been getting progressively more aggressive about "unredirecting" surfaces into hardware accelerated DRM planes in more circumstances. In this situation, the unredirected planes will not suffer compositing latency, as their buffers will be scanned out by the GPU at scanout time with the rest of the composited result. In modern Wayland, this is accomplished via both underlays and overlays.
There is also a slight penalty to the latency of mouse cursor movement that is imparted by using atomic DRM commits. Since using atomic DRM is very common in modern Wayland, it is normal for the cursor to have at least a fraction of a frame of added latency (depending on many factors.)
I'm of two minds about this. One, obviously it's sad. The old hardware worked perfectly and never had latency issues like this. Could it be possible to implement Wayland without full compositing? Maybe, actually. But I don't expect anyone to try, because let's face it, people have simply accepted that we now live with slightly more latency on the desktop. But then again, "old" hardware is now hardware that can more often than not, handle high refresh rates pretty well on desktop. An on-average increase of half a frame of latency is pretty bad with 60 Hz: it's, what, 8.3ms? But half a frame at 144 Hz is much less at somewhere around 3.5ms of added latency, which I think is more acceptable. Combined with aggressive underlay/overlay usage and dynamic triple buffering, I think this makes the compositing experience an acceptable tradeoff.
What about computers that really can't handle something like 144 Hz or higher output? Well, tough call. I mean, I have some fairly old computers that can definitely handle at least 100 Hz very well on desktop. I'm talking Pentium 4 machines with old GeForce cards. Linux is certainly happy to go older (though the baseline has been inching up there; I think you need at least Pentium now?) but I do think there is a point where you cross a line where asking for things to work well is just too much. At that point, it's not a matter of asking developers to not waste resources for no reason, but asking them to optimize not just for reasonably recent machines but also to optimize for machines from 30 years ago. At a certain point it does feel like we have to let it go, not because the computers are necessarily completely obsolete, but because the range of machines to support is too wide.
Obviously, though, simply going for higher refresh rates can't fix everything. Plenty of laptops have screens that can't go above 60 Hz, and they are forever stuck with a few extra milliseconds of latency when using a compositor. It is unideal, but what are you going to do? Compositors offer many advantages, it seems straightforward to design for a future where they are always on.
> ...or is that a class of performance we just have to sacrifice for the frame-perfect rendering of wayland?
I think I know what "frame perfect" means, and I'm pretty sure that you've been able to get that for ages on X11... at least with AMD/ATi hardware. Enable (or have your distro enable) the TearFree option, and there you go.
I read somewhere that TearFree is triple buffering, so -if true- it's my (perhaps mistaken) understanding that this adds a frame of latency.
> Can the compositor replicate the input-to-pixel latency of uncomposited x11 on low-end devices or is that a class of performance we just have to sacrifice for the frame-perfect rendering of wayland?
well, the answer is just no, wayland has been consistently slower than X11 and nothing running on top can't really go around that
At least they are honest regarding the reasons, not a wall of text to justify what bails down to "because I like it".
Naturally these kinds of having a language island create some attrition regarding build tooling, integration with existing ecosystem and who is able to contribute to what.
So lets see how it evolves, even with my C bashing, I was a much happier XFCE user than with GNOME and GJS all over the place.