In this simple case they're more or less equivalent if the only task is limiting concurrency, but in general usage of mutexes multiplies and soon enough someone else has created a deadlock situation.
Extending it however reveals some benefits, locking is often for stopping whilst waiting for something enqueued can be parallell with waiting for something else that is enqueued.
I think it very much comes down to history and philosophy, actors are philosophically cleaner (and have gained popularity with success stories) but back in the 90s when computers were physically mostly single-threaded and memory scarce, the mutex looked like a "cheap good choice" for "all" multithreading issues since it could be a simple lock word whilst actors would need mailbox buffering (allocations... brr),etc that felt "bloated" (in the end, it turned out that separate heavyweight OS supported threads was often the bottleneck once thread and core counts got larger).
Mutexes are quite often still the base primitive at the bottom of lower level implementations if compare-and-swap isn't enough, whilst actors generally are a higher level abstraction (better suited to "general" programming).
Atomic operations, memory barriers, condition variables, thread/"virtual processor" scheduling are philosophically cleaner since they're what the specified hardware/OS concurrency model actually provides, and can implement all of locks, mutexes, structured concurrency, arbitrary queues, actors etc. etc.