The article addresses this, sort of. I don't understand how you can run multiple postmasters.
> Most online resources chalk this up to connection churn, citing fork rates and the pid-per-backend yada, yada. This is all true but in my opinion misses the forest from the trees. The real bottleneck is the single-threaded main loop in the postmaster. Every operation requiring postmaster involvement is pulling from a fixed pool, the size of a single CPU core. A rudimentary experiment shows that we can linearly increase connection throughput by adding additional postmasters on the same host.
The article addresses this, sort of. I don't understand how you can run multiple postmasters.
> Most online resources chalk this up to connection churn, citing fork rates and the pid-per-backend yada, yada. This is all true but in my opinion misses the forest from the trees. The real bottleneck is the single-threaded main loop in the postmaster. Every operation requiring postmaster involvement is pulling from a fixed pool, the size of a single CPU core. A rudimentary experiment shows that we can linearly increase connection throughput by adding additional postmasters on the same host.