None that are well-documented publicly. There are a multitude of DGGS, often obscure, and they are often designed to satisfy specific applications. Most don’t have a public specification but they are easy to design.
If the objective is to overfit for high-performance scalable analytics, including congruency, the most capable DGGS designs are constructed by embedding a 2-spheroid in a synthetic Euclidean 3-space. The metric for the synthetic 3-space is usually defined to be both binary and as a whole multiple of meters. The main objection is that it is not an “equal area” DGGS, so not good for a pretty graphic, but it is trivially projected into it as needed so it doesn’t matter that much. The main knobs you might care about is the spatial resolution and how far the 3-space extends e.g. it is common to include low-earth orbit in the addressable space.
I was working with a few countries on standardizing one such design but we never got it over the line. There is quite a bit of literature on this, but few people read it and most of it is focused on visualization rather than analytic applications.
Pointers to the literature please. I don't work in this space but love geometry.