I’m curious what’s behind the speed improvements. It seems unlikely it’s just prioritization, so what else is changing? Is it new hardware (à la Groq or Cerebras)? That seems plausible, especially since it isn’t available on some cloud providers.
Also wondering whether we’ll soon see separate “speed” vs “cleverness” pricing on other LLM providers too.
There are a lot of knobs they could tweak. Newer hardware and traffic prioritisation would both make a lot of sense. But they could also lower batching windows to decrease queueing time at the cost of lower throughput, or keep the KV cache in GPU memory at the expense of reducing the number of users they can serve from each GPU node.
> It seems unlikely it’s just prioritization
Why does this seem unlikely? I have no doubt they are optimizing all the time, including inference speed, but why could this particular lever not entirely be driven by skipping the queue? It's an easy way to generate more money.
I wonder if they might have mostly implemented this for themselves to use internally, and it is just prioritization but they don't expect too many others to pay the high cost.
Nvidia GB300 i.e. Blackwell.
> so what else is changing?
Let me guess. Quantization?
It comes from batching and multiple streams on a GPU. More people sharing 1 GPU makes everyone run slower but increases overall token throughput.
Mathematically it comes from the fact that this transformer block is this parallel algorithm. If you batch harder, increase parallelism, you can get higher tokens/s. But you get less throughput. Simultaneously there is also this dial that you can speculatively decode harder with fewer users.
Its true for basically all hardware and most models. You can draw this Pareto curve of how much throughput per GPU vs how many tokens per second per stream. More tokens/s less total throughput.
See this graph for actual numbers:
Token Throughput per GPU vs. Interactivity gpt-oss 120B • FP4 • 1K / 8K • Source: SemiAnalysis InferenceMAX™
https://inferencemax.semianalysis.com/