Whenever I get worried about this I comb through our ticket tracker and see that ~0% of them can be implemented by AI as it exists today. Once somebody cracks the memory problem and ships an agent that progressively understands the business and the codebase, then I'll start worrying. But context limitation is fundamental to the technology in its current form and the value of SWEs is to turn the bigger picture into a functioning product.
A lot of this can be provided or built up by better documentation in the codebase, or functional requirements that can also be created, reviewed, and then used for additional context. In our current codebase it's definitely an issue to get an AI "onboarded", but I've seen a lot less hand-holding needed in projects where you have the AI building from the beginning and leaving notes for itself to read later
It's not binary. Jobs will be lost because management will expect the fewer developers to accomplish more by leveraging AI.
Can you give an example to help us understand?
I look at my ticket tracker and I see basically 100% of it that can be done by AI. Some with assistance because business logic is more complex/not well factored than it should be, but most of the work that is done AI is perfectly capable of doing with a well defined prompt.
We're all slowly but surely lowering our standards as AI bombards us with low-quality slop. AI doesn't need to get better, we all just need to keep collectively lowering our expectations until they finally meet what AI can currently do, and then pink-slips away.
Apparently you haven't seen ChatGPT enterprise and codex. I have bad news for you ...
[dead]
While true, my personal fear is that the higher-ups will overlook this fact and just assume that AI can do everything because of some cherry-pick simple examples, leading to one of those situations where a bunch of people get fired for no reason and then re-hired again after some time.