Hi HN! I'm currently a Master's student at USTC (University of Science and Technology of China). I've been diving deep into Data Engineering, especially in the context of Large Language Models (LLMs).
The Problem: I found that learning resources for modern data engineering are often fragmented and scattered across hundreds of medium articles or disjointed tutorials. It's hard to piece everything together into a coherent system.
The Solution: I decided to open-source my learning notes and build them into a structured book. My goal is to help developers fast-track their learning curve.
Key Features:
LLM-Centric: Focuses on data pipelines specifically designed for LLM training and RAG systems.
Scenario-Based: Instead of just listing tools, I compare different methods/architectures based on specific business scenarios (e.g., "When to use Vector DB vs. Keyword Search").
Hands-on Projects: Includes full code for real-world implementations, not just "Hello World" examples.
This is a work in progress, and I'm treating it as "Book-as-Code". I would love to hear your feedback on the roadmap or any "anti-patterns" I might have included!
Check it out:
Online: https://datascale-ai.github.io/data_engineering_book/
GitHub: https://github.com/datascale-ai/data_engineering_book
I'd have titled the submission 'Data Engineering for LLMs...' as it is focused on that.
this is great and i bookmarked it so i can read it later. i’m just curious though, was the readme written by chatgpt? i can’t tell if im paranoid thinking everything is written by chatgpt
English version: https://github.com/datascale-ai/data_engineering_book/blob/m...
Parquet alone is not for modern data engineering. Delta, Iceberg should be in the list
The figures in the different chapters are in english (it's not the case for the image in README_en.md).
[dead]
If you are interested in (2026-)internet scale data engineering challenges (e.g. 10-100s of petabyte processing) challenges and pre-training/mid-training/post-training scale challenges, please send me an email to [email protected] !
谢谢
How is possible a Chinese publication gets to the top in HN?
[dead]
I'm not sure whether this is an artefact of translation, but things like this don't inspire confidence:
> The "Modern Data Stack" (MDS) is a hot concept in data engineering in recent years, referring to a cloud-native, modular, decoupled combination of data infrastructure
https://github.com/datascale-ai/data_engineering_book/blob/m...
Later parts are better and more to the point though: https://github.com/datascale-ai/data_engineering_book/blob/m...
Edit: perhaps I judged to early. The RAG sections isn't bad either: https://github.com/datascale-ai/data_engineering_book/blob/m...