I mean in theory yes, good abstractions solve a lot - but in practice you're rarely starting from a clean slate. you're integrating with third-party APIs that have weird edge cases, working with legacy code that wasn't designed for what you're doing now, dealing with requirements that change mid-implementation. even with great abstractions the real world bleeds through. and AI doesn't know which abstractions are 'right' for your specific context, it just pattern-matches what looks reasonable. so you end up reviewing not just for bugs but to make sure it's not subtly incompatible with your architecture