If you include microsoft copilot trials in fortune 500s, absolutely. A lot of major listed companies are still oblivious to the functionality of AI, their senior management don't even use it out of laziness
That's probably true for some, but I think a lot of big orgs are simply risk-averse and see AI in general as a giant risk that isn't even fully baked enough to quantify yet. The security and confidentiality issues alone will make Operations hesitant, and Legal probably has some questions about IP (both the risk of a model outputting patented or otherwise protected code, and the huge legal gray area that is the copyrightability of the output of an LLM).
Give it a year or two and let things settle down and (assuming the music is still playing at that time) you might see more dinosaurs start to wander this way.
it turns out it's really hard to get a man to fish with a pole when you don't teach them how to use the reel
100% All of the people who are floored by AI capabilities right now are software engineers, and everyone who's extremely skeptical basically has any other office job. On investigating their primary AI interaction surface, it's Microsoft Co-Pilot, which has to be the absolute shittiest implementation of any AI system so far. As a progress-driven person, it's just super disappointing to see how few people are benefiting from the productive gains of these systems.
There's a lot of rote work in software development that's well-suited to LLM automation, but I think a lot of us overestimate the actual usefulness of a chatbot to the average white-collar worker. What's the point of making Copilot compose an email when your prompt would be longer than the email itself? You can tell ChatGPT to make you a slide deck, but slide decks are already super simple to make. You can use an LLM as a search engine, but we already have search engines. People sometimes talk about using a chatbot to brainstorm, but that seems redundant when you could simply think, free from the burden of explaining yourself to a chatbot.
LLMs are impressive and flexible tools, but people expect them to be transformative, and they're only transformative in narrow ways. The places they shine are quite low-level: transcription, translation, image recognition, search, solving clearly specified problems using well-known APIs, etc. There's value in these, but I'm not seeing the sort of universal accelerant that some people are anticipating.