"If N = 300, even a 256-bit seed arbitrarily precludes all but an unknown, haphazardly selected, non-random, and infinitesimally small fraction of permissible assignments. This introduces enormous bias into the assignment process and makes total nonsense of the p-value computed by a randomization test."
The first sentence is obviously true, but I'm going to need to see some evidence for "enormous bias" and "total nonsense". Let's leave aside lousy/little/badly-seeded PRNGs. Are there any non-cryptographic examples in which a well-designed PRNG with 256 bits of well-seeded random state produces results different enough from a TRNG to be visible to a user?
"If N = 300, even a 256-bit seed arbitrarily precludes all but an unknown, haphazardly selected, non-random, and infinitesimally small fraction of permissible assignments. This introduces enormous bias into the assignment process and makes total nonsense of the p-value computed by a randomization test."
The first sentence is obviously true, but I'm going to need to see some evidence for "enormous bias" and "total nonsense". Let's leave aside lousy/little/badly-seeded PRNGs. Are there any non-cryptographic examples in which a well-designed PRNG with 256 bits of well-seeded random state produces results different enough from a TRNG to be visible to a user?