GPGPU is doing better than ever.
Sure FP64 is a problem and not always available in the capacity people would like it to be, but there are a lot of things you can do just fine with FP32 and all of that research and engineering absolutely is done on GPU.
The AI-craze also made all of it much more accessible. You don't need advanced C++ knowledge anymore to write and run a CUDA project anymore. You can just take Pytorch, JAX, CuPy or whatnot and accelerate your numpy code by an order of magnitude or two. Basically everyone in STEM is using Python these days and the scientific stack works beautifully with nvidia GPUs. Guess which chip maker will benefit if any of that research turns out to be a breakout success in need of more compute?