A lot of naysayers in the comments, but there are so many uses for non-frontier models. The proof of this is in the openrouter activity graph for llama 3.1: https://openrouter.ai/meta-llama/llama-3.1-8b-instruct/activ...
10b daily tokens growing at an average of 22% every week.
There are plenty of times I look to groq for narrow domain responses - these smaller models are fantastic for that and there's often no need for something heavier. Getting the latency of reponses down means you can use LLM-assisted processing in a standard webpage load, not just for async processes. I'm really impressed by this, especially if this is its first showing.
Many older models are still better at "creative" tasks because new models have been benchmarking for code and reasoning. Pre-training is what gives a model its creativity and layering SFT and RL on top tends to remove some of it in order to have instruction following.
Exactly. One easily relatable use-case is structured content extraction or/and conversion to markdown for web page data. I used to use groq for same (gpt-oss20b model), but even that used to feel slow when doing theis task at scale.
LLM's have opened-up natural language interface to machines. This chip makes it realtime. And that opens a lot of use-cases.
These seem ideal for robotics applications, where there is a low-latency narrow use case path that these chips can serve, maybe locally.
Maybe this is a naive question, but why wouldn't there be market for this even for frontier models? If Anthropic wanted to burn Opus 4.6 into a chip, wouldn't there theoretically be a price point where this would lower inference costs for them?