Busy beavers are a classic example. They're mostly-hypothetical numbers that tell you "if any Turing machine of size s runs for longer than this, it doesn't halt." There's a link to that in the sentence you quoted.
Individual busy beavers BB(n) are finite natural numbers and thus quite computable. A related uncomputable number is the halting probability Omega of a universal prefix machine (whose programs form a prefix free set). By collecting enough halting programs to accumulate a probability of at least the first n bits of Omega (as a binary fraction), you will have determined all programs of length at most n that halt and thus also the busy beavers up to that size.
Individual busy beavers BB(n) are finite natural numbers and thus quite computable. A related uncomputable number is the halting probability Omega of a universal prefix machine (whose programs form a prefix free set). By collecting enough halting programs to accumulate a probability of at least the first n bits of Omega (as a binary fraction), you will have determined all programs of length at most n that halt and thus also the busy beavers up to that size.