Given how it is trained specifically (they didn't encourage it to think, they allowed it to) there was a lot of emergent behavior as it trained.
Sort of like chess engines rediscovering classic (named) chess openings. See section 2.2.3 for the training template (it's a single paragraph I can't reproduce here because I'm on my phone)
Example emergent behavior (section 2.2.4 page 8): the model learns to solve more complex problems by spending more time reasoning. It also naturally develops reflection (what have I tried?) and exploration strategies.
Fundamentally, you should think of this as a nn that learned to solve real problems by reasoning about them in written language.
(My favorite part: it defaulted to reasoning in multiple languages. They constrained it to only reason in a single language and this negatively impacted performance! But the hypothesis is that it improves interpretability)
Ever read philosophy? An acquaintance can and will readily mix and match 3 languages to obtain more precision.