Not that we would literally do this with Voyager, but it makes me wonder at the potential utility of a string of probes, one sent every couple of [insert correct time interval, decades, centuries?], to effectively create a communication relay stretching out into deep space somewhere.
My understanding with the Voyagers 1 and 2 is (a) they will run out of power before they would ever get far enough to benefit from a relay and (b) they benefited from gravity slingshots due to planetary alignments that happen only once every 175 years.
So building on the Voyager probes is a no-go. But probes sent toward Alpha Centauri that relay signals? Toward the center of the Milky Way? Toward Andromeda? Yes it would take time scales far beyond human lifetimes to build out anything useful, and even at the "closest" scales it's a multi year round trip for information but I think Voyager, among other things, was meant to test our imaginations, our sense of possible and one thing they seem to naturally imply is the possibility of long distance probe relays.
Edit: As others rightly note, the probes would have to communicate with lasers, not with the 1970s radio engineering that powered Voyagers 1 and 2.
No one likes to think this but it’s very possible voyager is the farthest humanity will go. In fact realistically speaking it is the far more likeliest possibility.
Not useful, because the signal are too weak to be picked up probe to probe.
On earth, the tiny signal from Voyager at this distance is picked up by dish the size of a football field; same with sending of the signal.
I think only the Grand Tour program was possible every 175 years: From Wikipedia [1]: "that an alignment of Jupiter, Saturn, Uranus, and Neptune that would occur in the late 1970s would enable a single spacecraft to visit all of the outer planets by using gravity assists."
Gravity assists with more than one planet are more frequent. Cassini-Huygens [2] as example had five (Venus, Venus, Earth, Jupiter, Saturn)
I would suspect when the goal ist only to leave the solar system as fast as possible (and don't reach a specific planet) they are much more often.
[1] https://en.wikipedia.org/wiki/Grand_Tour_program [2] https://en.wikipedia.org/wiki/Cassini%E2%80%93Huygens
Well, the voyager power source is still pretty good. But as I understand it the thermocouple that converts heat to electricity has degraded. Because the Pu-238 half life is 87 years so they wouldn't even be down to half yet..
I wonder if we can go the reverse direction, where instead of launching more probes from Earth to serve as relays, the spacecraft would launch physical media toward Earth packed with whatever data it has collected. Given advancements in data storage density, we could achieve higher bandwidth than what's possible with radios.
The logistics would be difficult since it involves catch those flying media, especially if the spacecraft were ejecting them as a form of propulsion, they might not even be flying toward Earth. I was just thinking how early spy satellites would drop physical film, and maybe there are some old ideas like those that are still worth trying today.
With current probes being so "slow" (peak speed of the Voyager probes was on the order of 0.005% the speed of light) I wonder if even doing 10 probes at once per decade gets you more data back than working towards faster probe for less total time.
You could use this to create a relay in reverse order, but I also wonder if having a 50-100 year old relay would be any better than just using modern tech directly on the newest, fastest probe and then moving on to the next when there are enough improvements.
My intuition is that the extra mass for the receivers would be a large negative in terms of travel time (1/sqrt(m) penalty assuming you can give each probe fixed kinetic energy).
Plus keeping a probe as active part of a relay is a major power drain, since it will have to be active for a substantial percentage of the whole multi-decade journey and there's basically no accessible energy in interstellar space.
Then again, it's still far from clear to me that sending any signal from a probe only a few grams in size can be received at Earth with any plausible receiver, lasers or not.
Could a probe return data by semaphore? Wave a flag that blocks the light of Alpha Centauri as seen from a telescope off to the side of the sun, say at the distance of Neptune's orbit. It should be possible to hide Alpha Centauri behind a relatively small semaphore until the probe gets fairly close.
Americium battery could last a lot longer.
That's how the mongols communicated but with guys on horses.
This is a link budget problem. A probe has to have a certain transmit power, receive sensitivity, physical size, fuel for orientation, etc. So you have to come up with the optimums there were it makes sense at all which isn't easy, especially compared to having one big station near earth that communicates point to point with the deep space whatever.
It might just have to be much too big to be worth it in the next n centuries.
If humans settle Mars it'll probably make sense to build one there for marginal improvement and better coverage with the different orbits of Earth and Mars.
Hmm, do you realize, that even if you have 1B probes everywhere. You're still bound by speed of light communication speed, right?
It's faster than probe speed in this age, yeah. But still not enough, if we're talking distances to other specific planets, stars, etc.
Two possible ways to solve this, humans will become immortal or speed of light bypass method will be discovered.
What you are describing has been proposed before, for example within context of projects like Breakthrough Starshot. In that the case the idea is to launch thousands of probes, each weighing only a few grams or less, and accelerating them to an appreciable fraction of the speed of light using solar sails and (powerful) earth-based lasers. The probes could reach alpha centauri within 20-30 years. There seems to be some debate though about whether cross-links between probes to enable relaying signals is ever practical from a power and mass perspective vs a single very large receiver on earth.