logoalt Hacker News

bmachoyesterday at 7:46 PM2 repliesview on HN

In my view nonnegative real numbers have good physical representations: amount, size, distance, position. Even negative integers don't have this types of models for them. Negative numbers arise mostly as a tool for accounting, position on a directed axis, things that cancel out each other (charge). But in each case it is the structure of <R,+> and not <R,+,*> and the positive and negative values are just a convention. Money could be negative, and debt could be positive, everything would be the same. Same for electrons and protons.

So in our everyday reality I think -1 and i exist the same way. I also think that complex numbers are fundamental/central in math, and in our world. They just have so many properties and connections to everything.


Replies

TexanFellertoday at 12:12 AM

> In my view nonnegative real numbers have good physical representations: amount, size, distance, position

I'm not a physicist, but do we actually know if distance and time can vary continuously or is there a smallest unit of distance or time? A physics equation might tell you a particle moves Pi meters in sqrt(2) seconds but are those even possible physical quantities? I'm not sure if we even know for sure whether the universe's size is infinite or finite?

Someoneyesterday at 8:34 PM

> In my view nonnegative real numbers have good physical representations

In my view, that isn’t even true for nonnegative integers. What’s the physical representation of the relatively tiny (compared to ‘most integers’) Graham’s number (https://en.wikipedia.org/wiki/Graham's_number)?

Back to the reals: in your view, do reals that cannot be computed have good physical representations?

show 1 reply